
● Networks are mission critical
● Every network is a unique snowflake
● Tactical, opportunistic changes proliferate
● Vendor specific implementations
● Testing is expensive/impossible

Managing networks hasn't changed much in 30 years

+

+

+

● What is Ansible, its common use cases
● How Ansible works and terminology
● Running Ansible playbooks
● Network modules
● An introduction to roles
● An introduction to Ansible Galaxy

What You Will Learn

MANAGING NETWORKS
HASN’T CHANGED

IN 30 YEARS.

● Compute is no longer the slowest link in the chain
● Businesses demand that networks deliver at the speed of cloud
● Automation of repeatable tasks
● Bridge silos

Automation considerations

Red Hat Ansible network automation is enterprise software for automating and
managing IT infrastructure.

As a vendor agnostic framework Ansible can automate F5 (BIG-IP, BIG-IQ), Arista
(EOS), Cisco (IOS, IOS XR, NX-OS), Juniper (JunOS), Open vSwitch and VyOS.

Ansible Tower is an enterprise framework for controlling, securing and managing
your Ansible automation with a UI and RESTful API.

What is Ansible?

According to Gartner

Source: Gartner, Look Beyond Network Vendors for Network Innovation. January 2018. Gartner ID: G00349636. (n=64)

SIMPLE POWERFUL AGENTLESS

Gather information and audit

Configuration management

Workflow orchestration

Manage ALL IT infrastructure

Human readable automation

No special coding skills needed

Tasks executed in order

Get productive quickly

Agentless architecture

Uses OpenSSH and paramiko

No agents to exploit or update

More efficient & more secure

Ansible: The Universal Automation Framework

SERVERS

NETWORKING

SYS/CLOUD ADMIN

NET OPS

STORAGE
ADMINS STORAGE

ANSIBLE NETWORK AUTOMATION

ansible.com/networking

700+
Networking

modules

50
Networking
platforms

https://www.ansible.com/networking

Common use cases

● Backup and restore device configurations
● Upgrade network device OS
● Ensure configuration compliance
● Apply patches to address CVE
● Generate dynamic documentation

Basically anything an operator can do manually, Ansible can automate.

How Ansible Works

NETWORKING
DEVICES

LINUX/WINDOWS
HOSTS

Module code is
copied to the
managed node,
executed, then
removed

Module code is
executed locally
on the control
node

ANSIBLE AUTOMATION ENGINE

CMDB

USERS

INVENTORY
HOSTS

NETWORK
DEVICES

PLUGINS

CLI

MODULES

ANSIBLE
PLAYBOOK

CORE NETWORK COMMUNITY

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

ANSIBLE AUTOMATION ENGINE

CMDB

USERS

INVENTORY
HOSTS

NETWORK
DEVICES

PLUGINS

CLI

MODULES

ANSIBLE
PLAYBOOK

CORE NETWORK COMMUNITY

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

 PLAYBOOKS ARE WRITTEN IN YAML
 Tasks are executed sequentially
 Invoke Ansible modules

ANSIBLE AUTOMATION ENGINE

CMDB

USERS

INVENTORY
HOSTS

NETWORK
DEVICES

PLUGINS

CLI

ANSIBLE
PLAYBOOK

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

 MODULES ARE “TOOLS IN THE TOOLKIT”
 Python, Powershell, or any language
 Extend Ansible simplicy to the entire stack

MODULES

CORE NETWORK COMMUNITY

ANSIBLE AUTOMATION ENGINE

CMDB

USERS

INVENTORY
HOSTS

NETWORK
DEVICES

CLI

ANSIBLE
PLAYBOOK

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

 PLUGINS ARE “GEARS IN THE ENGINE”
 Code that plugs into the core engine
 Adaptability for various uses & platforms

CORE NETWORK COMMUNITY

MODULES PLUGINS

10.1.1.2
10.1.1.3
172.16.1.1
172.16.1.2
192.168.1.2
192.168.1.3

Understanding Inventory

[lb]

f5 ansible_host=34.199.128.69

[control]

ansible ansible_host=107.23.192.217

[webservers]

host1 ansible_host=107.22.141.4

host2 ansible_host=54.146.162.192

Understanding Inventory
There is always a group called "all" by default

[DC:children]

lb

webservers

[rhel:children]

control

webservers

Groups can be nested

[all:vars]

ansible_user=student2

ansible_ssh_pass=ansible

ansible_port=22

[lb]

f5 ansible_host=34.199.128.69 ansible_user=admin private_ip=172.16.26.136 ansible_ssh_pass=admin

[webservers]

host1 ansible_host=107.22.141.4 ansible_user=ec2-user private_ip=172.16.170.190

host2 ansible_host=54.146.162.192 ansible_user=ec2-user private_ip=172.16.160.13

Inventory - variables

Group variables apply for all devices
in that group

Host variables apply to the host and
override group vars

A Sample Playbook

- name: BIG-IP SETUP

 hosts: lb

 connection: local

 gather_facts: false

 tasks:

 - name: CREATE NODES

 bigip_node:

 server: "f5.ansible.com"

 user: "admin"

 password: "admin"

 server_port: "8443"

 host: 192.168.0.1

 name: "webserver01"

● Playbook is a list of plays.

● Each play is a list of tasks.

● Tasks invoke modules.

● A playbook can contain more

than one play.

Exploring the Lab Environment

Lab Time

In this lab you will explore the lab environment and build
familiarity with the lab inventory.

Approximate time: 10 mins

Playbook definition for network automation

● Target play execution using hosts
● Define the connection : local
● About gather_facts

[student1@ansible ~]$ ansible-navigator run bigip-facts.yml -m stdout

PLAY [GRAB F5 FACTS] ***

TASK [COLLECT BIG-IP FACTS] **

ok: [f5]

PLAY RECAP ***

f5 : ok=1 changed=0 unreachable=0 failed=0

Running a playbook

[student1@ansible ~]$ ansible-navigator run bigip-facts.yml -m stdout -v

TASK [COLLECT BIG-IP FACTS]

**

changed: [f5] => {"changed": true, "system_info": {"base_mac_address":

"0a:54:53:51:86:fc", "chassis_serial": "685023ec-071e-3fa0-3849dcf70dff",

"hardware_information": [{"model": "Intel(R) Xeon(R) CPU E5-2676 v3 @ 2.40GHz",

"name": "cpus", "type": "base-board", "versions": [{"name": "cpu stepping",

"version": "2"},

.

<output truncated for readability>

Displaying output
Use the optional verbose flag during playbook execution

$ ansible-navigator run bigip-facts.yml -m stdout --limit f5node1

Limiting Playbook execution
Playbook execution can be limited to a subset of devices using the --limit flag.

Forget a flag / option ?
Just type ansible-playbook then press enter

Use the --help flag

 "system_info": {

 "base_mac_address": "0a:54:53:51:86:fc",

 "chassis_serial":
"685023ec-071e-3fa0-3849dcf70dff",

 "product_version": "13.1.0.7",

 }

Quick Refresher on JSON
Structured Data is easy to work with

bigip_facts['system_info']['base_mac_address']

00a:54:53:51:86:fc

Registering the output
The register parameter is used to collect the output of a task execution. The output of the task
is 'registered' in a variable which can then be used for subsequent tasks.

 - name: COLLECT BIG-IP FACTS
 bigip_device_facts :
 gather_subset:

- system_info
 server: "{{private_ip}}"
 user: "{{ansible_user}}"
 password: "{{ansible_ssh_pass}}"
 server_port: 8443
 register: bigip_device_facts

Displaying output - The "debug" module
The debug module is used like a "print" statement in most programming languages.

- name: DISPLAY ONLY THE MAC ADDRESS
 debug:
 var: bigip_device_facts['system_info']['base_mac_address']

TASK [DISPLAY ONLY THE MAC ADDRESS]***
ok: [f5] => {
 "bigip_device_facts['system_info']['base_mac_address']": "0a:54:53:51:86:fc"

}

● Tags allow the user to selectively execute tasks within a play.
● Multiple tags can be associated with a given task.
● Tags can also be applied to entire plays or roles.

Limiting tasks within a play

- name: DISPLAY THE VARIABLE OUTPUT

 debug:

 var: output_variable

 tags: debug

Tags are invoked using the --tags flag while running the playbook

[user@ansible]$ ansible-navigator run bigip-facts.yml -m stdout --tags=debug

● --skip-tags allows you to skip everything

Limiting tasks within a play - or skip them!

- name: DISPLAY THE VARIABLE OUTPUT

 debug:

 var: output_variable

 tags: debugtask

Tags are invoked using the --tags flag while running the playbook

[user@ansible]$ ansible-navigator run bigip-facts.yml -m stdout

--skip-tags=debugtask

A note about variables
Other than the user defined variables, Ansible supports many inbuilt variables. For example:

Variable Explanation

ansible_* Output of fact gathering

inventory_hostname magic inbuilt variable that is the name of
the host as defined in inventory

hostvars magic inbuilt variable dictionary variable
whose key is inventory_hostname
e.g.
hostvars[webserver1].my_variabl
e

Exercise 1.1 -Using Ansible to gather data from F5 BIG-IP

Lab Time

In this lab you will write your first playbook and run it to gather facts from a F5
BIG-IP load balancer.

Approximate time: 15 mins

Modules

● Typically written in Python (but not limited to it)
● Modules are idempotent
● Modules take user input in the form of parameters

Modules do the actual work in Ansible, they are what gets executed in
each playbook task.

● *_facts
● *_command
● *_config

More modules depending on
platform

Network modules
Ansible modules for network automation typically references the vendor OS followed by the
module name.

Arista EOS = eos_*
Cisco IOS/IOS-XE = ios_*
Cisco NX-OS = nxos_*
Cisco IOS-XR = iosxr_*
F5 BIG-IP = bigip_*
F5 BIG-IQ = bigiq_*
Juniper Junos = junos_*
VyOS = vyos_*

Modules Documentation
https://console.redhat.com/ansible/automation-hub

[user@ansible]$ ansible-navigator doc bigip_device_ facts -m stdout

Modules Documentation
Documentation right on the command line

> BIGIP_DEVICE_FACTS (/usr/lib/python2.7/site-packages/ansible/modules/network/f5/bigip_device_facts.py)

 Collect facts from F5 BIG-IP devices.

OPTIONS (= is mandatory):

= gather_subset

 When supplied, this argument will restrict the facts returned to a given subset.

 Can specify a list of values to include a larger subset.

.

.

[lb]

f5 ansible_host=34.199.128.69 ansible_user=admin private_ip=172.16.26.136
ansible_ssh_pass=admin

Inventory - Revisiting Variables

ansible_host 34.199.128.69

ansible_user admin

private_ip 172.16.26.136

ansible_ssh_pass admin

Using the F5 bigip_node module

 - name: CREATE NODES

 bigip_node:

 server: "{{private_ip}}"

 user: "{{ansible_user}}"

 password: "{{ansible_ssh_pass}}"

 server_port: "8443"

 validate_certs: "no"

 host: "{{hostvars[item].ansible_host}}"

 name: "{{hostvars[item].inventory_hostname}}"

 loop: "{{ groups['webservers'] }}"

Using the F5 bigip_node module

 - name: CREATE NODES

 bigip_node:

 server: "{{private_ip}}"

 user: "{{ansible_user}}"

 password: "{{ansible_ssh_pass}}"

 server_port: "8443"

 validate_certs: "no"

 host: "{{hostvars[item].ansible_host}}"

 name: "{{hostvars[item].inventory_hostname}}"

 loop: "{{ groups['webservers'] }}"

Information for connecting
to F5 BIG-IP load balancer

Using the F5 bigip_node module

 - name: CREATE NODES

 bigip_node:

 server: "{{private_ip}}"

 user: "{{ansible_user}}"

 password: "{{ansible_ssh_pass}}"

 server_port: "8443"

 validate_certs: "no"

 host: "{{hostvars[item].ansible_host}}"

 name: "{{hostvars[item].inventory_hostname}}"

 loop: "{{ groups['webservers'] }}"

nodes being added
● host refers to the web server IP

address
● name is a human identifiable trait

can be the DNS name but does not depend on it

Using the F5 bigip_node module

 - name: CREATE NODES

 bigip_node:

 server: "{{private_ip}}"

 user: "{{ansible_user}}"

 password: "{{ansible_ssh_pass}}"

 server_port: "8443"

 validate_certs: "no"

 host: "{{hostvars[item].ansible_host}}"

 name: "{{hostvars[item].inventory_hostname}}"

 loop: "{{ groups['webservers'] }}"

Loops over all the web servers in
the group webservers

Exercise 1.2 -Adding nodes to F5 BIG-IP

Lab Time

In this lab you will creating a playbook that makes use of the BIG-IP node
module to add two RHEL (Red Hat Enterprise Linux) web servers as nodes for
the BIG-IP load balancer.

Approximate time: 15 mins

Using the F5 bigip_pool module

 - name: CREATE POOL

 bigip_pool:

<<login info removed for brevity>>

 name: "http_pool"

 lb_method: "round-robin"

 monitors: "/Common/http"

 monitor_type: "and_list"

Using the F5 bigip_pool module

 - name: CREATE POOL

 bigip_pool:

<<login info removed for brevity>>

 name: "http_pool"

 lb_method: "round-robin"

 monitors: "/Common/http"

 monitor_type: "and_list"

The name is a user defined name
that we will add nodes to in a later
exercise

Using the F5 bigip_pool module

 - name: CREATE POOL

 bigip_pool:

<<login info removed for brevity>>

 name: "http_pool"

 lb_method: "round-robin"

 monitors: "/Common/http"

 monitor_type: "and_list"

The lb_method refers to the load
balancing method, a full list is
provided on the module
documentation

Using the F5 bigip_pool module

 - name: CREATE POOL

 bigip_pool:

<<login info removed for brevity>>

 name: "http_pool"

 lb_method: "round-robin"

 monitors: "/Common/http"

 monitor_type: "and_list"

The monitors parameter refers
to the protocol that the F5 BIG-IP
load balancer will be listening on

Using the F5 bigip_pool module

 - name: CREATE POOL

 bigip_pool:

<<login info removed for brevity>>

 name: "http_pool"

 lb_method: "round-robin"

 monitors: "/Common/http"

 monitor_type: "and_list"

This monitor_type parameter is
technically the default. We can
actually configure multiple
monitors (protocols)
simultaneously

F5 Web GUI

F5 Web GUI - Configuration

Click on the pool to get more information.
Monitor ‘http’ assigned to the pool.

Exercise 1.3 -Adding a load balancing pool

Lab Time

Demonstrate use of the BIG-IP pool module to configure a load balancing pool
in BIG-IP device. A load balancing pool is a logical set of devices, such as web
servers, that you group together to receive and process traffic.

Approximate time: 15 mins

Using the F5 bigip_pool_member module

 - name: ADD POOL MEMBERS

 bigip_pool_member:

<<login info removed for brevity>>

 state: "present"

 name: "{{hostvars[item].inventory_hostname}}"

 host: "{{hostvars[item].ansible_host}}"

 port: "80"

 pool: "http_pool"

 loop: "{{ groups['webservers'] }}"

F5 BIG-IP Web GUI

The web servers are now
configured and can be found
under the Members tab of
http_pool

Parsing the output

. . .<<Get output using bigip_device_facts and store in variable>>

 - name: "View complete output"

 debug: "msg={{bigip_device_facts}}"

 - name: "Show members belonging to pool"

 debug: "msg={{item}}"

 loop: "{{bigip_device_facts.ltm_pools | json_query(query_string)}}"

 vars:

 query_string: "[?name=='http_pool'].members[*].name[]"

JSON Query Filters:
https://docs.ansible.com/ansible/latest/user_guide/playbooks_filters.html#json-query-filter

https://docs.ansible.com/ansible/latest/user_guide/playbooks_filters.html#json-query-filter

Exercise 1.4 -Adding members to a pool on F5

Lab Time

Demonstrate use of the BIG-IP pool member module to tie web server nodes
into the load balancing pool http_pool created in the previous exercises.

Approximate time: 15 mins

Using the F5 bigip_virtual_server module

 - name: ADD VIRTUAL SERVER

 bigip_virtual_server:

<<login info removed for brevity>>

 name: "vip"

 destination: "{{private_ip}}"

 port: "443"

 enabled_vlans: "all"

 all_profiles: ['http','clientssl','oneconnect']

 pool: "http_pool"

 snat: "Automap"

F5 BIG-IP Web GUI

The virtual server can be found
under Local Traffic -> Virtual
Servers

Exercise 1.5 -Adding a virtual server

Lab Time

Demonstrate use of the BIG-IP virtual server module to create a VIP (virtual
IP). The VIP will be tied to the http_pool created in earlier exercises. Use a
web browser to demonstrate the F5 load balancing between host1 and host2.

Approximate time: 15 mins

Using the F5 bigip_irule module
 vars:

 irules: ['irule1','irule2']

 tasks:

 - name: ADD iRules

 bigip_irule:

 <<login info removed for brevity>>

 module: "ltm"

 name: "{{item}}"

 content: "{{lookup('file','{{item}}')}}"

 with_items: "{{irules}}"

Exercise 1.6 -Adding a iRule

Lab Time

Demonstrate use of the BIG-IP irule module to upload irules to the BIG-IP and
then attach those iRules to the Virtual Server created earlier .

Approximate time: 15 mins

Using the F5 bigip_config module
 - name: SAVE RUNNING CONFIG ON BIG-IP

 bigip_config:

 server: "{{private_ip}}"

 user: "{{ansible_user}}"

 password: "{{ansible_ssh_pass}}"

 server_port: "8443"

 validate_certs: "no"

 save: yes

Exercise 1.7 -Saving running configuration

Lab Time

Demonstrate use of the BIG-IP config module to save the running BIG-IP
configuration to disk

Approximate time: 15 mins

Using Provider

 - provider

 A dict object containing connection details.

 suboptions:

 password:

 server:

 server_port:

 user:

 validate_certs:

 <<not a complete list>>

Use provider to avoid setting the connection details in every module,

set it as a fact once as a task and then re-use it.

Using Provider Example
 tasks:

 - name: Setup provider

 set_fact:

 provider:

 server: "{{private_ip}}"

 user: "{{ansible_user}}"

 password: "{{ansible_ssh_pass}}"

 server_port: "8443"

 validate_certs: "no"

 - name: Query BIG-IP facts

 bigip_device_facts:

 provider: "{{provider}}"

 gather_subset:

 - ltm-pools

 register: bigip_facts

 - name: SAVE RUNNING CONFIG

 bigip_config:

 provider: “{{provider}}”

 save: yes

Operational Automation

● Dynamically grab node information from F5 BIG-IP
○ What pools are present?
○ What pool members are part of the pools and what are their IP

addresses and Port numbers?
● Disable particular pool member or all pool members
● Verify with Web UI and Ansible Playbooks

Exercise 2.0 - Disabling a pool member

Lab Time

Demonstrate disabling of a node member:port from the pool.

Approximate time: 25 mins

Deleting with the F5 bigip_node module

 - name: DELETE NODES

 bigip_node:

 server: "{{private_ip}}"

 user: "{{ansible_user}}"

 password: "{{ansible_ssh_pass}}"

 server_port: "8443"

 validate_certs: "no"

 name: "{{item}}"

 state: absent

Using the state parameter with
absent, the module will make
sure the specified configuration is
not existent (deleted)

Exercise 2.1 - Deleting F5 BIG-IP Configuration

Lab Time

Demonstrate use of the Ansible state parameter for modules. The state
parameter will remove a configuration from the F5 BIG-IP load balancer.

Approximate time: 15 mins

Block

 - name: BLOCK

 block:

 - debug:

 msg: 'Task 1!'

 - debug:

 msg: 'Task 2!'

 - debug:

 msg: 'Task 3!'

Block

 - name: BLOCK

 block:

 - debug:

 msg: 'Task 1!'

 - debug:

 msg: 'Task 2!'

 when:

 - '“Xeon” in check_model'

 - '“E5-2670” in check_mode1'

Block - Rescue
 - name: Attempt and graceful roll back demo

 block:

 - debug:

 msg: 'I execute normally'

 - command: /bin/false

 - debug:

 msg: 'I never execute, due to the above task failing'

 rescue:

 - debug:

 msg: 'I caught an error'

 - command: /bin/false

 - debug:

 msg: 'I also never execute :-('

● If a task fails in the block, it will immediately go to rescue.
● If there is no rescue stanza, the Playbook will stop executing for the host it failed on.

● If there is a rescue stanza, the tasks under the rescue stanza will execute.
○ If any tasks under rescue fail, the Playbook will stop executing for the host it

failed on.
○ If everything executes successfully under the rescue the Playbook will continue

on like no failures happened. The failure will be recorded in the Play Recap.

Block - Rescue
What happens when?

Exercise 2.2 - Advanced: Error Handling

Lab Time

Demonstrate the use of the block and the rescue functionality for Ansible
Playbooks. This exercise will also tie the previous exercises into one holistic
Playbook.

Approximate time: 30 mins

● Roles help simplify playbooks.
● Think of them as callable functions for repeated tasks.
● Roles can be distributed/shared; similar to libraries.

Roles
Roles are Playbooks

site.yml

- hosts: DC
 roles:
 - add_node
 - add_vip

site.yml
roles/
 add_node/
 tasks/
 main.yml
 add_vip/
 tasks/
 main.yml

Directory StructureExample Playbook

Roles - really simple, but powerful

site.yml

- hosts: routers
 roles:
 - add_node
 - add_vip

 add_node/
 tasks/
 main.yml
 add_vip/
 tasks/
 main.yml

- name: ADD VIRTUAL SERVER

 bigip_virtual_server:

<<output removed for brevity>>

 - name: CREATE NODES

 bigip_node:

<<output removed for brevity>>

Playbook File Structure Tasks

Ansible Galaxy
http://galaxy.ansible.com

● Ansible Galaxy is a hub for
finding, reusing and sharing
Ansible roles.

● Jump-start your automation
project with content
contributed and reviewed by
the Ansible community.

http://galaxy.ansible.com

App Services 3 Extension (AS3)

The Application Services 3 Extension uses a declarative model,
meaning you send a declaration file using a single Rest API call.

One
Declarative
Statement

BIG-IPAS3

Many
Imperative
Commands

Simple JSON "web_app": {
 "class": "Application",
 "template": "http",
 "serviceMain": {
 "class": "Service_HTTP",
 "virtualAddresses": [
 "{{private_ip}}"
],
 "pool": "app_pool"
 },
 "app_pool": {
 "class": "Pool",
 "monitors": [
 "http"
],
 "members": [
<<snippet, output removed for brevity>>>

● Declaration not ordered, nor
sequenced

● Variables can be used easily
within the AS3 template

● Incremental Declaration
capable

Pushing a Template
Module coming in Ansible 2.7 (Today!)

 - name: PUSH AS3
 uri:
 url: "https://{{ ansible_host }}:8443/mgmt/shared/appsvcs/declare"
 method: POST
 body: "{{ lookup('template','j2/tenant_base.j2', split_lines=False) }}"
 status_code: 200
 timeout: 300
 body_format: json
 force_basic_auth: yes
 user: "{{ ansible_user }}"
 password: "{{ ansible_ssh_pass }}"
 validate_certs: no

Exercise 3.0 - Intro to AS3

Lab Time

Demonstrate building a virtual server (exactly like the Section 1 Ansible F5
Exercises) with F5 AS3

Approximate time: 15 mins

Exercise 3.1 - Operational Change with AS3

Lab Time

Demonstrate changing an existing Web Application AS3 template. There is a
problem with the existing template, the serviceMain is showing red. What is
wrong?

Approximate time: 15 mins

Exercise 3.2 - Deleting a Web Application

Lab Time

Demonstrate deleting a Web Application with AS3 and the uri module.

Approximate time: 15 mins

Next Steps
Thanks so much for joining the class. Here are some next steps
on how to get more information and join the community!

Bookmark the GitHub Project
https://www.github.com/network-automation

● Examples, samples and
demos

● Run network topologies
right on your laptop

https://www.github.com/network-automation

● Slack
https://ansiblenetwork.slack.com
Join by clicking here https://bit.ly/2OfNEBr

● IRC
#ansible-network on freenode
http://webchat.freenode.net/?channels=ansible-network

Chat with us
Engage with the community

https://ansiblenetwork.slack.com
https://bit.ly/2OfNEBr
http://webchat.freenode.net/?channels=ansible-network

● It's easy to get started
https://ansible.com/get-started

● Learn about Ansible & F5
https://ansible.com/f5

● Instructor Led Classes
Class DO457: Ansible for Network Automation
https://red.ht/2MiAgvA

Next Steps

https://ansible.com/get-started
https://ansible.com/f5
https://red.ht/2MiAgvA

+

